Home pagePress monitoringBiobot made of heart cells and gel looks like fluttering...

Biobot made of heart cells and gel looks like fluttering butterfly

Date: 2.4.2018 

A team of researchers at Southeast University in Nanjing, China, has developed a heart-on-a-chip platform incorporating rat heart muscle cells, hydrogel and nanocrystals. In their paper published in the journal Science Robotics, the group describes their structure, how it was made, and the uses to which it might be put. 
Kredit:  Fu et al., Sci. Robot. 3, eaar8580 (2018).

As researchers at pharmaceutical companies and other research institutes work to create new drugs for various maladies, others look for ways to assist them. To that end, heart-on-a-chip platforms have been developed to test the impact of drugs on heart anatomy. In this new effort, the researchers have turned to the chameleon for inspiration. As they describe it, they were inspired by a study of the means by which the lizard changes its colors. It gave them the idea to induce the same effect in a lab specimen rather than a living creature. The result of that effort is an oddly beautiful butterfly-like biobot, seemingly changing colors as it flaps its wings.

The platform is not actually a butterfly, or even related to one. Instead, it is a physical structure made by adding nanocrystals to a hydrogel and applying a layer of rat heart muscle cells – the fluttering occurs as the muscle cells contract and release. The expansion and contraction of the muscle cells also impact the nanocrystals, causing them to reflect different colors. Parts of the butterfly turn blue as cells contract while others turn red as they expand.

The team created the platform in the shape of a butterfly to make the result more striking. Its purpose, however, is far more serious – to visually note what happens as drugs are applied to the heart cells – they may speed up contractions or slow them down, depending on what the drug was designed to do.



Czech Bio


  • BC AV CR
  • Budvar
  • CAVD
  • CZBA
  • Eco Tend
  • Envisan Gem
  • Gentrend
  • JAIP
  • Jihočeská univerzita
  • Madeta
  • Forestina