Home pagePress monitoringBody on a chip could improve drug evaluation

Body on a chip could improve drug evaluation

Date: 21.3.2018 

MIT engineers have developed new technology that could be used to evaluate new drugs and detect possible side effects before the drugs are tested in humans. Using a microfluidic platform that connects engineered tissues from up to 10 organs, the researchers can accurately replicate human organ interactions for weeks at a time, allowing them to measure the effects of drugs on different parts of the body. 

Such a system could reveal, for example, whether a drug that is intended to treat one organ will have adverse effects on another.

"Some of these effects are really hard to predict from animal models because the situations that lead to them are idiosyncratic," says Linda Griffith, the School of Engineering Professor of Teaching Innovation, a professor of biological engineering and mechanical engineering, and one of the senior authors of the study. "With our chip, you can distribute a drug and then look for the effects on other tissues and measure the exposure and how it is metabolized."

These chips could also be used to evaluate antibody drugs and other immunotherapies, which are difficult to test thoroughly in animals because they are designed to interact with the human immune system.

The researchers created several versions of their chip, linking up to 10 organ types: liver, lung, gut, endometrium, brain, heart, pancreas, kidney, skin, and skeletal muscle. Each "organ" consists of clusters of 1 million to 2 million cells. These tissues don't replicate the entire organ, but they do perform many of its important functions.

Significantly, most of the tissues come directly from patient samples rather than from cell lines that have been developed for lab use. These so-called "primary cells" are more difficult to work with but offer a more representative model of organ function, Griffith says.

 


 

OPPI, MPO, EU

CEBIO

  • CEBIO
  • BC AV CR
  • Budvar
  • CAVD
  • CZBA
  • Eco Tend
  • Envisan Gem
  • Gentrend
  • JAIP
  • Jihočeská univerzita
  • Madeta
  • Forestina
  • ALIDEA

LinkedIn
TOPlist