Home pagePress monitoringFerns borrowed genes to flourish in low light

Ferns borrowed genes to flourish in low light

Date: 17.4.2014 

During the age of the dinosaurs, the arrival of flowering plants as competitors could have spelled doom for the ancient fern lineage. Instead, ferns diversified and flourished under the new canopy—using a mysterious gene that helped them adapt to low-light environments.

A team led by Duke University scientists has pinpointed the curious origins of this gene and determined that it was transferred to ferns from a group of unassuming moss-like plants called hornworts. The findings were announced today, April 14, in the Proceedings of the National Academy of Sciences.

For years, researchers have suspected that a gene called neochrome played a role in the evolution of ferns. Neochrome is a hybrid of two other plant genes which code for photoreceptor proteins that sense blue and red light.

"Neochrome is a 'chimeric' gene," said Fay-Wei Li, lead author and Ph.D. student in Duke's biology department. It produces a photoreceptor that senses both blue and red light, affording ferns a unique advantage in forests shaded by flowering plants. "Most plants sense and grow toward blue light, but under the canopy, the filtered light spectrum has more red light than blue."

"Neochrome helped ferns to 'see' better," Li said. What hasn't been crystal clear is the gene's origin. Li set out to investigate its evolution by systematically combing through plant genomes from the Duke Herbarium and 1000 Plants Initiative.

Neochrome turned up in a surprising place: the genomes of hornworts, a damp-loving plant group related to mosses.

There was strong evidence that the fern version of neochrome descended from the hornwort version. By looking at sequence changes in the gene's various spellings, they constructed a family tree of light-sensitive genes, in which fern neochrome "nested" neatly within the hornwort lineage. The analysis also showed that the gene versions separated about 179 million years ago.Only one mechanism could explain how the gene hopped from hornworts to ferns so long after the lineages themselves diverged: horizontal gene transfer.


 

OPPI, MPO, EU

CEBIO

  • CEBIO
  • BC AV CR
  • Budvar
  • CAVD
  • CZBA
  • Eco Tend
  • Envisan Gem
  • Gentrend
  • JAIP
  • Jihočeská univerzita
  • Madeta
  • Forestina
  • ALIDEA

LinkedIn
TOPlist