Home pagePress monitoringTurbocharger for the cell machinery

Turbocharger for the cell machinery

Date: 9.1.2019 

Researchers of the University of Bern have discovered a new molecular regulatory mechanism in unicellular parasites which has never before been observed. RNA fragments do not act as brakes in the cell apparatus, but on the contrary as "stimulants": they boost protein production after periods of stress.

Kredit: University of Bern.Today, it is assumed that in many living organisms the majority of RNA produced by transcription is actually "non-coding". In humans, noncoding RNA makes up an amazing 98 percent of RNA. Why is so much RNA transcribed that does not serve the "classical" purpose? RNA is obviously not only a DNA blueprint, but also takes on many other tasks in the cell.

But it is not only human biology that continues to pose puzzles. Researchers are particularly interested in trypanosomes, parasitic protozoa responsible for sleeping sickness. These microorganisms are known for their unique molecular biological apparatus. Recently, researchers from the Department of Chemistry and Biochemistry at the University of Bern discovered a particularly unusual mechanism: an ncRNA molecule that acts as a kind of stimulant for ribosomes and that is produced during stress.

This finding astonished the researchers because until now only the opposite function of non-coding RNA had been known, acting as inhibitors for the cell apparatus. During stress, ncRNA molecules attach to ribosomes, pushing the emergency stop button of the protein machinery. But an acceleration of production?

 


 

OPPI, MPO, EU
Czech Bio

CEBIO

  • CEBIO
  • BC AV CR
  • Budvar
  • CAVD
  • CZBA
  • Eco Tend
  • Envisan Gem
  • Gentrend
  • JAIP
  • Jihočeská univerzita
  • Madeta
  • Forestina
  • ALIDEA

LinkedIn
TOPlist