Home pagePress monitoringSynthetic genetic circuits could help plants adapt to...

Synthetic genetic circuits could help plants adapt to climate change

Date: 15.8.2022 

Increasingly, global food production is being threatened by the effects of climate change. As floods, droughts, and extreme heat waves become more common, crops need to be able to adapt faster than ever.

Kredit JAN Brophy.Researchers at Stanford University are working on ways to manipulate biological processes in plants to help them grow more efficiently and effectively in a variety of conditions. Jennifer Brophy, an assistant professor of bioengineering, and her colleagues have designed a series of synthetic genetic circuits that allow them to control the decisions made by different types of plant cells.

In a paper published recently in Science, they used these tools to grow plants with modified root structures. Their work is the first step in designing crops that are better able to collect water and nutrients from the soil and provides a framework for designing, testing, and improving synthetic genetic circuits for other applications in plants.¨

"Our synthetic genetic circuits are going to allow us to build very specific root systems or very specific leaf structures to see what is optimal for the challenging environmental conditions that we know are coming," Brophy said. "We're making the engineering of plants much more precise."

To achieve fine-scale control over plant behavior, Brophy and her colleagues built synthetic DNA that essentially works like a computer code with logic gates guiding the decision-making process. In this case, they used those logic gates to specify which types of cells were expressing certain genes, allowing them to adjust the number of branches in the root system without changing the rest of the plant.

Image source: JAN Brophy.

 


 

OPPI, MPO, EU

CEBIO

  • CEBIO
  • BC AV CR
  • Budvar
  • CAVD
  • CZBA
  • Eco Tend
  • Envisan Gem
  • Gentrend
  • JAIP
  • Jihočeská univerzita
  • Madeta
  • Forestina
  • ALIDEA

LinkedIn
TOPlist